ADVANCED
MECHATRONICS
PROJECT 1:

e ARDUINO

® Members: Manoj Bandri, Wenjie Chen

Presentation Date: 3/21/16

MOTIVATION

When a cat falls in the air with
1ts back facing the ground, it
knows how to maneuver itself to
land upright on its feets

Robotic systems can also take
advantage of such maneuver to
properly orient itself in the case
of falling from heights

CONSERVATION OF ANGULAR MOMENTUM

Moment 1s equal to the derivative of angular
momentum with respect to time

M, = H,

The total angular momentum of a system 1s
conserved (constant) when no external moments
are applied to the system.

*

H, =0 H, = constant

Cats are capable of orienting itself in mid air due
to internal moments applied

PROJECT IDEA

Motors can be implemented into a falling object
to change 1ts orientation in mid air

Force of Gravity and Drag Force applied

Moment applied due to drag force can be
neglected

To simplify problem, only rotation with respect to
the z-axis will be controlled by a motor

MATERIALS

o Arduino Uno

®iuccEr B
‘f'\ GNDm;ﬁ_‘n i
® scuveh e

o Plastic Enclosure

MATERIALS

o Brushless DC motor

CIRCUIT DIAGRAM

£ ro ulll“’ ‘W

WIGH BISCRARE,

COOUND

Ardui
duino s .

APPROACH

o Ideal Solution:
» DC Identification of Brushless DC Motor
* Determine Kand t
» Determine Mol of the entire body and motor

» Implement PD controller to output angular position of the entire body
from input of angular velocity of motor

o Problems:

* Arduino’s processing speed cannot keep up with the high speed of
motor 2 Cannot find complete relation between PWM and motor
speed to control input

* For motor speeds that are measureable, data gathered does not
behave as governed by DC motor transfer function - Cannot
determine K and t

» Cannot determine Mol with available equipments

APPROACH

Alternative Solution:
Assume direct control of entire body based on PWM input

Approximate angular velocities for different inputs of PWM
signals for 1 sec, neglecting acceleration from rest and
deceleration to rest

Assume linear correlation between PWM signal and the
entire body speed based on experimental data

Angular Velocity of Body vs. PWM signal

1000
900
800
700
600
500
400
300
200
100

0
1500 1600 1700 1800 1900 2000 2100

Pulse Duration [us]

y =1.669x - 2421.4

Angular Velocity [deg/s]

CONTROL ALGORITHM

The body must orient itself back to its reference
angular position as it drops before landing

Apply appropriate PWM signal to rotate the body
within the time of drop based on:

Angular position offset (“degree”)
Height from which it is dropped (“pos_z_curr”)

Use MPU-6050 to gather information on angular
position and height

CONTROL ALGORITHM

Calculate position from uniform acceleration

dv (t —)
a=— - v—1, = alt —

dt o L
v = v, + alt

dx dx At
vV=——2 — = v, + a

dt ~ dt 0

1
X = Xg+ VoAt + Ea(ﬂt)z

Calculate angular position from angular velocity

w=——> 60— 6,= wlt—t
o 0 (t — to)

CONTROL ALGORITHM

Calculate time 1t takes to fall from rest
0=h-— %g(at)z

2h
At = |—
g

Approximate uniform angular velocity
L A
At
Set signal bases on required angular velocity
Positive angular offset
w+ 24214

1.669

Negative angular offset
w + 2583.4

T 1.669

PROGRAM

#include "Wire.h"
#include "I2Cdev.h"™
#include "MPUROS0.R™
#include <Servo.h>
Servo blde:

float rotater

MEU&050 accelgyro;
intlé t ax, &y, &%, dxX, d¥y, dJE;

#define LED PIN 13

bocl raised = falaer
bocl blinkState = falae;
bool disorient = false;

kool fall = false;
int addr = 0;

int accel reading;
int accel corrected;
int accel offset = -256;
flcoat accel_z;

int wel_z_prev = 0;
int wel_z curr;

float pos_z_prev = 0;
float pos_Z currc;

int 3pin_time;

int i = 0:

int gyro offset = 151;
int gyro_corrected;

int gyro reading;

float gyro _rate;

float gyro_scale = 0.027
float gyro_angle:

float degree;

float omega;

float loop time = 0.05;

int last_update;
int cycle time;
locng last_cycle

]
]
-s

PROGRAM

vold setup() |

Wire.begin():
Serial.begin(9600);
pinMode (LED PIN, CUTEUT):
bldc.attach(9)

delay (3000);
accelgyro.initialize () ;

while (i<100}{

accelgyro.getMotionéd (sax, &av, =azZz, &JX, &JV, &JZ);

accel reading = az;

accel _corrected = accel_reading - accel_offset:

accel z = (float) {(accel_corrected) *5.81/16600;

wvel z curr = vel _z prev + 100#*{accel =z-9.775)*loop_time;

if (wvel_z curr>0){

po3_E_CUrr = pod_E prev + vel Z prev*loop time + 1/2* (accel =z-9.775)*100*zg(loop_time);

1

wvel z prev = vel zZ_curr;

posS_Z_prev

i+4;

time stamp():
1

raised = true;

pOS_Z_CUrE;

PROGRAM

vold loop() { if (mccel =z<&){
fall = true;

accelgyro.getMotioné (sax, =ay, &=8Z, &JX, &=QV, =JZ):; }
accel reading = az; elae |
accel_corrected = accel_reading - accel_offset: fall = falze:
accel _z = (float) {(accel_corrected) *3.81/16600; }
if (vel_z curr==0}] if {gb=({degree)>10){
bklinkState = !bBlinkState; disorient = true;
digitalWrite (LED _PIN, blinkState); }
} elze]
disorient = false;
ayro_reading = gz; fall = falae:
omega = -{{float) {{gyro_reading) /131 - gyro_offset) * bldc.write (1489);
gyro_scale - 0.151/(-loop_time)) *50.0; }

gyro_angle = gyro angle + omega * -loop _time;
degree = gyro_angle;

if {degree>180) |
degree = degree - 360;
}
else if(degree<-180)]
degree = degree + 3&0;

PROGRAM

if{ ((fall = disocrient) = raised)){

1

float t = sgro({2.0*%pos_z curr/9.81/100);
float w = degree/t;
int counter=0;
int msec = t*1000;
int PWM = 1489;
ff »1500 rotates box clockwise
ff <1498 rotates box counter clockwise
if ({degree>10)
FM = (w/2 + 2421.4)/1.669;
}
glse if (degree<-10)]
FWM = (w/2 + 2583.4)/1.669;
1
counter = milli=z({)+m3ec;
while{millis {)<counter) {
bldc.write (EWM) ;

if {degree>10)]
blde.write (1510} ;

1

glse 1f (degree<-10)]
bldc.write (14380);

}

raised = false;

time stamp();

vold time stamp () {
while ((milli=z{) - laat_cycle) < 50){
delav(l):
}

last_cycle = millis({):

DEMONSTRATION

